the conductivities of the binary mixtures of CO₂-N₂-C₂H₆ by assuming that the contribution of the internal degrees of freedom were additive to the hard sphere conductivity:

$$k = k_{hs} + k_{ie}$$
 (6)

where, for pure compounds,

$$k_{ie} = F \rho D \left(C_V - \frac{3}{2} \frac{k_B}{m} \right) \tag{7}$$

The factor F is an arbitrary weighting factor to be determined by regression analysis on the data for the pure compounds along with the effective molecular diameter, Γ . In the curve fit for pure gases, the product ρ D was assumed constant, and the one atmosphere values were used. The values obtained for molecular diameter, F, and the standard errors of estimate are:

Gas	J, A	F	S, %	. Max. Dev., %
Carbon Dioxide	4.56	1.045	4.6	≈8. 3
Nitrogen	3.97	1.113	4.4	+7.0
Ethane	5.04	.68	3.9	-7.5

The calculated monatomic thermal conductivities were first approximations since the mixture equation is a first approximation.

These values of \(\tag{V}\) were used to calculate mixture hard sphere conductivities using Thorne's equations. The contri-